Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Imaging (Bellingham) ; 11(3): 034008, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38694626

ABSTRACT

Purpose: Optical coherence tomography (OCT) is an emerging imaging tool in healthcare with common applications in ophthalmology for detection of retinal diseases, as well as other medical domains. The noise in OCT images presents a great challenge as it hinders the clinician's ability to diagnosis in extensive detail. Approach: In this work, a region-based, deep-learning, denoising framework is proposed for adaptive cleaning of noisy OCT-acquired images. The core of the framework is a hybrid deep-learning model named transformer enhanced autoencoder rendering (TEAR). Attention gates are utilized to ensure focus on denoising the foreground and to remove the background. TEAR is designed to remove the different types of noise artifacts commonly present in OCT images and to enhance the visual quality. Results: Extensive quantitative evaluations are performed to evaluate the performance of TEAR and compare it against both deep-learning and traditional state-of-the-art denoising algorithms. The proposed method improved the peak signal-to-noise ratio to 27.9 dB, CNR to 6.3 dB, SSIM to 0.9, and equivalent number of looks to 120.8 dB for a dental dataset. For a retinal dataset, the performance metrics in the same sequence are: 24.6, 14.2, 0.64, and 1038.7 dB, respectively. Conclusions: The results show that the approach verifiably removes speckle noise and achieves superior quality over several well-known denoisers.

2.
J Imaging ; 10(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38667984

ABSTRACT

Imaging from optical coherence tomography (OCT) is widely used for detecting retinal diseases, localization of intra-retinal boundaries, etc. It is, however, degraded by speckle noise. Deep learning models can aid with denoising, allowing clinicians to clearly diagnose retinal diseases. Deep learning models can be considered as an end-to-end framework. We selected denoising studies that used deep learning models with retinal OCT imagery. Each study was quality-assessed through image quality metrics (including the peak signal-to-noise ratio-PSNR, contrast-to-noise ratio-CNR, and structural similarity index metric-SSIM). Meta-analysis could not be performed due to heterogeneity in the methods of the studies and measurements of their performance. Multiple databases (including Medline via PubMed, Google Scholar, Scopus, Embase) and a repository (ArXiv) were screened for publications published after 2010, without any limitation on language. From the 95 potential studies identified, a total of 41 were evaluated thoroughly. Fifty-four of these studies were excluded after full text assessment depending on whether deep learning (DL) was utilized or the dataset and results were not effectively explained. Numerous types of OCT images are mentioned in this review consisting of public retinal image datasets utilized purposefully for denoising OCT images (n = 37) and the Optic Nerve Head (ONH) (n = 4). A wide range of image quality metrics was used; PSNR and SNR that ranged between 8 and 156 dB. The minority of studies (n = 8) showed a low risk of bias in all domains. Studies utilizing ONH images produced either a PSNR or SNR value varying from 8.1 to 25.7 dB, and that of public retinal datasets was 26.4 to 158.6 dB. Further analysis on denoising models was not possible due to discrepancies in reporting that did not allow useful pooling. An increasing number of studies have investigated denoising retinal OCT images using deep learning, with a range of architectures being implemented. The reported increase in image quality metrics seems promising, while study and reporting quality are currently low.

3.
J Imaging ; 9(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37998091

ABSTRACT

Optical coherence tomography (OCT) is an emerging imaging tool in healthcare with common applications in ophthalmology for the detection of retinal diseases and in dentistry for the early detection of tooth decay. Speckle noise is ubiquitous in OCT images, which can hinder diagnosis by clinicians. In this paper, a region-based, deep learning framework for the detection of anomalies is proposed for OCT-acquired images. The core of the framework is Transformer-Enhanced Detection (TED), which includes attention gates (AGs) to ensure focus is placed on the foreground while identifying and removing noise artifacts as anomalies. TED was designed to detect the different types of anomalies commonly present in OCT images for diagnostic purposes and thus aid clinical interpretation. Extensive quantitative evaluations were performed to measure the performance of TED against current, widely known, deep learning detection algorithms. Three different datasets were tested: two dental and one CT (hosting scans of lung nodules, livers, etc.). The results showed that the approach verifiably detected tooth decay and numerous lesions across two modalities, achieving superior performance compared to several well-known algorithms. The proposed method improved the accuracy of detection by 16-22% and the Intersection over Union (IOU) by 10% for both dentistry datasets. For the CT dataset, the performance metrics were similarly improved by 9% and 20%, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...